

Vehicle Examination Centre

SA 8c AVA Report

Job No: 1012429

Doc Ref: 1012429 Vehicle Examination Centre

Latest Revision: A

Date: 5/06/2020

Project Name:	Vehicle Examination Centre	
Client:	Hip Hing	
Report Title:	SA 8c AVA Report	
Job Number:	1012429	

Document Revision History

Revision Ref	Issue Date	Purpose of issue / description of revision	
Draft	20/02/2019	SA 8c AVA Report 1 st Draft	
1st Issue	26/02/2019	SA 8c AVA Report for BEAM Submission	
2 nd Issue	05/06/2020	SC8c AVA Report addressing PlanD's comments	

Document Validation (latest issue)

Prepared by	Checked by	Verified by
Albert Ng	Desmond Lee	Jonathan Yau
Ð	Des	Fy

[©] Cundall Hong Kong Limited ("Cundall") owns the copyright in this report and it has been written for the sole and confidential use of Hip Hing Limited. It must not be reproduced whole or in part without the express written authorisation of Cundall Hong Kong Limited. Parties other than those specifically named in this disclaimer must not rely upon this report. Any third party relying on this report does so at their own risk. Cundall accepts no duty or responsibility (including in negligence) to any such third party.

Executive Summary

Cundall had been commissioned by Architectural Service Department (ArchSD) to carry out an Air Ventilation Assessment (AVA) for the Vehicle Examination Centre in Tsing Yi. This study is based on the design of the proposed development and existing structures surrounding the project site.

The study compares the wind ventilation performance of the latest design scheme with that of a baseline, which adopts an earlier planning design scheme provided by ArchSD. The study follows the procedures and guidelines outlined in Technical Circular No. 1/06 jointly issued by the House, Planning and Lands Bureau (HPLB) and Environment, Transport and Works Bureau (ETWB). The study is based on the methodology for an "Initial Study" where CFD is used to assess the wind performance of the design.

The study has found that the surrounding wind environment for the proposed and baseline schemes are very similar, with a slight overall improvement in the proposed scheme. This similarity can be attributed to the similar building massing, and also because of an isolated location that is tucked away in an alcove at the base of surrounding mountains to the east and north. The SVR and LVR for the baseline and proposed schemes are summarised in the table below.

	Proposed	Baseline
SVR	0.133	0.127
LVR	0.130	0.128

Table of Contents

Execu	utive Summary	3
Table	of Contents	4
1.	Introduction	2
1.1	This Report	2
1.2	Project Background	2
1.3	Site Location	2
1.4	Building Description	3
1.5	Scope of Study	5
1.6	Baseline Scheme and Proposed Scheme	5
Proje	ct Planning Option (Baseline Scheme)	5
2.	Methodology	6
2.1	Initial Study Methodology	6
2.1.1	Assessment Standard	6
2.1.2	CFD as Analysis Tool	6
2.1.3	Velocity Ratio as a Performance Indicator	6
2.2	Key Assumptions	7
2.2.1	Project Information	7
2.2.2	Site Wind Availability	8
2.2.3	Area of Assessment	9
2.2.4	CFD Model Setup1	0
2.2.5	Test Points 1	3
2.2.5.	1 Perimeter Test Points	3
2.2.5.	2 Overall Test Points	3
3.	Results	5
3.1	Site Spatial Average Velocity Ratio1	5
3.2	Local Spatial Velocity Ratio	5
3.3	CFD Study Result Summary1	6
4.	Conclusion 1	7
Appe	ndix A – Baseline Scheme Velocity Ratio Contour and Vector Maps	8
Appe	ndix B – Proposed Scheme Velocity Ratio Contour and Vector Maps	6
Appe	ndix C – Baseline Scheme Velocity Ratios	4
Appe	ndix D – Proposed Scheme Velocity Ratios	6

Appendix E – Baseline Scheme Architectural Layouts	. 38
Appendix F – Proposed Architectural Drawings	. 43
Appendix G – Input Parameters	. 52

1. Introduction

1.1 This Report

This study has been prepared for BEAM Plus New Building v1.2 Provisional Assessment (PA) submission for Transport Department's Vehicle Examination Centre (VEC) to demonstrate that the criteria under SA 8c Air Ventilation Assessment is fulfilled with proposed design scheme.

1.2 Project Background

The VEC is a building of approximately 34,843 m² designed for the express purpose for the inspection of vehicles by the Transport Department. The building comprises of three main storeys, accommodating vehicle inspection areas, vehicular queuing and waiting spaces and carparking, with 6 support building storeys, with space for plant rooms and ancillary services including offices. The building is developed as part of a design and construct project.

Cundall has been appointed the sustainability consultant for the VEC and has been commissioned to carry out an investigation on the impact of the site on surrounding wind ventilation. This report outlines the analysis approach, results and conclusions derived from the study.

1.3 Site Location

The project site is located on Sai Tso Wan Road in Tsing Yi, as shown in Figure 1-1, and is currently used as an open carpark under a Short-Term Tenancy issued by Lands Department (LandsD). The Site occupies an area of approximately 34,843 m2 with existing elevations at about +13.5mPD to +22.2mPD.

The site sits in an enclave between Tsing Sha Highway to the south, Cheung Tsing Highway to the north and West Tsing Yi Road to the east. Further, the highways both exit from tunnels to the south-southeast and north, respectively. To the south, there are a number of industrial uses, such as a dock yard, oil terminals and a bus depot. A portion (about a quarter) of the Site is situated underneath the flyover structure of the Tsing Sha Highway.

Figure 1-1 Site Location

The Site mainly falls within the "Industrial" ("I") Zone in the approved Tsing Yi Outline Zoning Plan No. S/TY/30 (the OZP), with a very small portion (167m2) intruding into the "Green Belt" ("GB") Zone. With regard to the Notes to the OZP, "Government Use (not elsewhere specified)" is always permitted in the "I" zone. The maximum plot ratio is 9.5 and there is no building height restriction. With regard to the intrusion into the "GB" Zone, Planning Department (PlanD) advised that it can be considered as a minor adjustment of site boundary for the proposed development when detailed planning proceeds.

1.4 Building Description

Layout plans of the Project are presented in Appendix F and include the following:

- General:
 - o 30 nos. of inspection lanes for different kinds of vehicles
 - Queuing and waiting area
 - Parking spaces for staff and public
 - 2 nos. chassis dynamometers (Dynos) for diesel vehicles and LPG/petrol vehicles on ground floor
 - Ancillary facilities for vehicle examination such as a track lane and test ramp for brake testing, a swept circle testing area, tilting stability test platform and two-axle weigh bridge, four posts hoists.
 - o Office accommodation and ancillary plant room

Figure 1-2 Site Location and its Environs

- External and landscape Works including landscape gardens, vertical greening and green roof etc. to suit the design of the VEC.
- External Works including underground utilities connection, fence wall installation, modification of existing ingress/ egress, additional new egress through the Tsing Sha Control Rea (TSCA) and road widening work at STW Road.

1.5 Scope of Study

This report uses Computational Fluid Dynamics (CFD) simulation for the assessment of wind velocity at pedestrian level surrounding the project site, following the methodology of "Initial Study" as set out in the Technical Circular No. 1/06 issued jointly by House, Planning and Lands Bureau (HPLB) and Environment, Transport and Works Bureau (ETWB), and its Annex A – Technical Guide for Air Ventilation Assessment for Development in Hong Kong (hereafter referred to as the "Technical Circular").

The geometry of studied scheme is identical to proposed design.

1.6 Baseline Scheme and Proposed Scheme

A Baseline Scheme and a Proposed Scheme were selected from design options developed during planning. These are described below.

Project Planning Option (Baseline Scheme)

The Baseline Scheme adopts one of the design options developed during the early planning stages and was submitted in an earlier AVA submission to ArchSD. This design was subsequently accepted by ArchSD at the time in their assessment of the project's impact on the wind environment of surrounding areas. Architectural drawings are provided in Appendix E.

Proposed Design (Proposed Scheme)

The Proposed Scheme is the architectural design accepted by ArchSD. This design is semi enclosed in order to maximise natural ventilation potential to remove pollutants in the inspection halls. The form of the slabs and upramps have also been modified to cater for the anticipated traffic flow in the building.

The images below illustrate the building form of Baseline Scheme and Proposed Scheme in this study.

 Baseline Scheme

 Figure 1-3 Building Forms of Baseline Scheme and Proposed Scheme

Proposed Scheme

2. Methodology

2.1 Initial Study Methodology

2.1.1 Assessment Standard

This study follows the methodology of "Initial Study" as set out in the Technical Guide for Air Ventilation Assessment for Developments in Hong Kong published by Housing, Planning and Lands Bureau (HPLB) and Environment, Transport and Works Bureau (ETWB) and adopted by Planning Department (PlanD).

2.1.2 CFD as Analysis Tool

The proposed method of "Initial Study" of air ventilation assessment is to compare a baseline building to the proposed design using CFD simulations. This method is accepted by the guideline and is preferred as it offers a means to visualise to assist analysis. CFD simulations compare performance under the highest frequency wind directions whose total annual frequency account for at least 75%. The results will be compared in terms of Wind Velocity Ratio to quantitatively assess whether the design case is an improvement over the base case design.

2.1.3 Velocity Ratio as a Performance Indicator

Velocity Ratio (VR) will be used as the primary indicator of wind performance for this wind environment study. VR is defined as the ratio of the wind velocity as experienced by the pedestrian at 2 meters above grade and the velocity of wind at the top of the boundary layer, which exists at a height of around 400 m to 600 m above grade, and represents wind unadulterated by terrain and structures. The VR indicates how much of the wind available to an area could be experienced and enjoyed by pedestrians on the ground, taking into account the surrounding buildings, topography and the proposed development. Two types of Velocity Ratios will be compared:

• Site Velocity Ratio (SVR)

The SVR gives an idea of the wind impact to a site's immediate vicinity. It is derived from the weighted average VRs of Perimeter Test Points, which are located on the perimeter of the site boundary.

• Local Velocity Ratio (LVR)

The LVR gives an idea of the impact of the proposed development on the wind access of surrounding areas. It is derived from the weighted average VRs of Perimeter Test Points and Overall Test Points, which are located on the perimeter of the site boundary and around the site, respectively.

The VRs at each test point for each wind condition will be converted to an average weighted according to the annual frequency of the wind condition they are observed in. SVR and LVR will be derived from these. A design scheme with higher Weighted Average SVR and LVR is generally considered to have better air ventilation access.

2.2 Key Assumptions

2.2.1 Project Information

The study is based on the best information that are available at the time of study. The key information and sources are detailed as below:

Table 2-1 Summary of Key Assumptions

Items	References	Source
	Architectural Drawings	
Base Case Building	Design scheme developed during Project Planning Stage	Planning Stage Scheme by ArchSD; Appendix E
Proposed Case Building	3 rd AIP Architectural Package issued on 12 th December 2018 by Wong Tung	Wong Tung; Appendix F
	Site Information	
Map of Surrounding Area	WOK TAI WAN TIO-NE-4A TIO-NE-4A TIO-NE-4A TIO-NE-4B TIO-NE-4B TIO-NE-4B TIO-NE-4B TIO-NE-4B TIO-NE-4B TIO-NE-4B TIO-NE-4B TIO-NE-4B SAI SHAN CHUN-FALC Chemical We	Digital map published by Lands Department
Wind Data	Consultancy Study on Establishment of Simulated Site Wind Availability Data for Air Ventilation Assessments in Hong Kong <u>http://www.pland.gov.hk/pland_en/info_serv/site_wind/sit</u> <u>e_wind/064048.html</u>	Planning Department

2.2.2 Site Wind Availability

The wind availability data up to 500m above ground adopted for this study is taken from the Consultancy Study on Establishment of Simulated Site Wind Availability Data for Air Ventilation Assessments in Hong Kong, which was commissioned by Planning Department in October 2010. The wind velocity profile from 10m to 500m are extracted from the wind data provided in the results from the study. Wind velocities beneath 10m are calculated using a logarithmic relationship with the wind velocity at 10m as a reference. As required in the Technical Circular for Air Ventilation Assessments, no less than 75% of the annual probable winds have been accounted for which included a total of eight wind directions. The considered wind directions sums up to **78.0%** of annual probability and the detailed annual probabilities are indicated in the table below:

		Wi	64,48	
Direction	N Degree	Probability of Occurrence (%)	Rank	Annual Prevailing Wind
N	0	2.1%	12	
NNE	22.5	<u>3.</u> 9%	10	
NE	45	9.8%	4	\checkmark
ENE	67.5	12.9%	2	\checkmark
E	90	19.3%	1	\checkmark
ESE	112.5	10.3%	3	\checkmark
SE	135	6.3%	7	\checkmark
SSE	157.5	5.9%	8	\checkmark
S	180	6.2%	6	\checkmark
SSW	202.5	7.3%	5	\checkmark
SW	225	4.4%	9	
WSW	247.5	2.7%	11	
W	270	2.3%	12	
WNW	292.5	1.3%	15	
NW	315	1.6%	14	
NNW	337.5	1.4%	15	
Total		78.0%		>=75%

Table 2-2 Prevailing Wind Directions at 500m for AVA Study

As indicated in the table above, the most frequent prevailing wind direction is E, which represents 19.3% of wind occurrence, followed by ENE (12.9%), ESE (10.3%) and NE (9.8%). The detailed wind availability data and corresponding wind boundary profiles are as below:

	Wi	nd direction	/degree an	gle	
	22.5-	112.5-	202.5-	292.5-	
Height	112.4	202.4	292.4	22.4	
500	6.85	5.92	4.86		400 - 1
450	6.89	5.74	4.68		
400	6.86	5.47	4.47		Ê 300 -
350	6.77	5.18	4.28		
300	6.63	4.93	4.12		
250	6.45	4.72	4.00		
200	6.23	4.57	3.91		
150	5.97	4.45	3.82		
100	5.64	4.30	3.69		
50	5.24	4.06	3.47		
10	4.84	3.75	3.19		Wind Speed (m/s)

Table 2-3 Wind Availability Data and Wind Profile

2.2.3 Area of Assessment

The "*Technical Guide for Ventilation Assessment for Developments in Hong Kong*" requires that the surrounding area of a perpendicular distance of 2H (where H is the height of the building) from the project boundary must be modelled. In this case, the proposed building height is approximately 43m (approximately 65mPD up to main roof) that 2H is equivalent to 86m. Detailed elevations are found in Appendix F.

In this project, due to the extremely low density development around the site, the study area was extended to at least 10H and up to 20H in each direction, as shown in Figure 2-1.

Figure 2-1 – Extent of Domain

Figure 2-2 – 3D Model Showing Domain

2.2.4 CFD Model Setup

CFD Software

FLUENT- v19.1 has been used for the analysis.

CFD Model Setup

The parameters of the CFD model are as follows:

- Domain Size: 600x1700x1600 [m]
- Mesh Type: Polyhedral
- Grid Size: Maximum 0.5m for the proposed development, 1m for other buildings. Maximum size 20m.

Figure 2-3 Demonstration of Meshing Setting in Study Model

- Turbulence Model: κ-ε standard turbulence model
- Wind Profile

	Wind direction/degree angle			
	22.5-	112.5-	202.5-	292.5-
Height	112.4	202.4	292.4	22.4
500	6.85	5.92	4.86	
450	6.89	5.74	4.68	
400	6.86	5.47	4.47	
350	6.77	5.18	4.28	
300	6.63	4.93	4.12	
250	6.45	4.72	4.00	
200	6.23	4.57	3.91	
150	5.97	4.45	3.82	
100	5.64	4.30	3.69	
50	5.24	4.06	3.47	
10	4.84	3.75	3.19	

Figure 2-4 Wind Profile Adopted for Study

• Convergence Criteria: 0.1%

Simplification of Geometry:

Since the intention of AVA is to study wind behaviour within and around the Site for the Base Case and Proposed Case, a level of approximation and simplification of geometry are necessary for the scale of study based on professional judgement. For example:

- Buildings and flyovers will be modelled in layout block forms to represent overall massing instead of every single detail.
- Trees, fence walls, cars, minor structure etc. will not be modelled.

Images of Baseline and Proposed Building

The CFD models for baseline and proposed buildings are built based on the assumptions above. Below are the images of the model images.

Figure 2-5 Baseline Scheme CFD Model

Figure 2-6 Proposed Scheme CFD Model

2.2.5 Test Points

Overall there are 80 testing points inserted in the CFD model to measure the results, consisting of Perimeter Test Points and Overall Test Points.

Table 2-4 Summary o	f Test P	Points in	CFD M	lode
---------------------	----------	-----------	-------	------

	Perimeter Test Point	Overall Test Points
Typical Requirement	30-50	50-80
Proposed	40	50

2.2.5.1 Perimeter Test Points

Perimeter Test Points are positioned on the project site boundary. They are useful to assess the effect of the project on the immediate surroundings. According to the Technical Circular, test points spaced out at around 10 m to 50 m centre to centre (or more if a larger test site is evaluated) are placed on perimeter of the project site boundary.

Test points are normally not necessary at perimeter(s) where there are no major air ventilation issues e.g. waterfront areas with ample sea breeze, inaccessible land such as green belts. Tests points must be located at the junctions of all roads leading to the project site, at main entrances to the project, and at corners of the project site.

Perimeter test points will provide data for the Site Air Ventilation Assessment. Typically, about 30 to 50 perimeter test points that are well spaced out and located will suffice. For this project, 40 perimeter test points are employed at a spacing of around 25 meters.

2.2.5.2 Overall Test Points

Overall test points are more uniformly distributed and positioned in the open spaces, on the streets and places of the project and Assessment Area where pedestrians frequently have access to. For practical reasons, around 50 to 80 test points may be adequate for typical development sites.

This group of overall test points, together with the perimeter test points, will provide data for the Local Air Ventilation Assessment. For this project, 50 overall test points are employed.

Figure 2-7 Location of Test Points

3. Results

3.1 Site Spatial Average Velocity Ratio

The Site Spatial Average Velocity Ratio (SVR) gives an indication of the impact that the building has on its immediate surroundings. The Baseline Scheme SVR is range is 0.127, with average VRs of perimeter points ranging from 0.03 to 0.3. The Proposed Scheme shows the slightly better performance in SVR with a value of 0.133, with average VRs ranging from 0.04 to 0.28. The similarity between the wind availability of both cases is largely due to the similar building massing, and also because of their unimposing scale on the surrounding buildings. The location of the building in an alcove at the base of surrounding mountains to the east and north would also limit its impact on the surrounding wind environment.

Direction	Baseline Scheme Average VR	Proposed Scheme Average VR
SVR	0.127	0.133
Max Average VR	0.30	0.28
Min Average VR	0.03	0.04

Table 3-1 Site Air Ventilation Assessment

3.2 Local Spatial Velocity Ratio

The Local Spatial Velocity Ratio (LVR) gives an indication of the impact that the building has on its greater surroundings. It is noted that the performance of both cases is similar in terms of maximum, minimum and overall weighted LVR, revealing that both cases impact to the air ventilation in their surrounding areas are very similar, despite the difference in design between the two schemes. This is due to the enclosed and isolated location of the project site. Topographical effects on wind are much stronger than those by the project building.

Direction	Baseline Scheme Average VR	Proposed Scheme Average VR
LVR	0.128	0.130
Max Average VR	0.30	0.28
Min Average VR	0.03	0.04

Table 3-2 Local Air Ventilation Assessment

3.3 CFD Study Result Summary

In accordance to the above observations, it can be concluded that the proposed design has similar effect on its surroundings to the originally planned design. Thus, the design has been optimised with respect to its impact on the ventilation access of surrounding areas. Features to enhance wind environment have been incorporated as much as possible, including permeable building design and low building profile, in order to reduce the impact of the building on its surrounding wind environment.

The full results are graphically presented in the appendices:

- Appendix A Baseline Scheme Velocity Ratio Contour and Vector Maps
- Appendix B Proposed Scheme Velocity Ratio Contour and Vector Maps.

The detailed numerical results are presented in:

- Appendix C Baseline Scheme Velocity Ratios; and
- Appendix D Proposed Scheme Velocity Ratios.

4. Conclusion

This AVA study has successfully investigated the pedestrian wind environment and has provided insight into the impact of a proposed building design on the local wind conditions through a comparison with a base case.

This study has been completed according to Technical Circular No. 1/06 issued jointly by House, Planning and Lands Bureau (HPLB) and Environment, Transport and Works Bureau (ETWB) and is found to be in compliance.

The SVR and LVR of the design case in the previous section show that the wind environments in the proposed and baseline schemes are very similar. This is largely due to the similar building massing, and also because of an isolated location that is tucked away in an alcove at the base of surrounding mountains to the east and north.

The study results have demonstrated an optimised design in which wind performance in terms of wind distribution at the pedestrian level in areas where pedestrians are expected to spend time is not affected compared to the original planned design. These improvements largely come about from design decisions made in order to enhance the wind environment for areas within the site immediately around the building, where pedestrians are expected, or in fact permitted, to go.

Appendix A – Baseline Scheme Velocity Ratio Contour and Vector Maps

Appendix B – Proposed Scheme Velocity Ratio Contour and Vector Maps

Appendix C – Baseline Scheme Velocity Ratios

Baseline Scheme Wind Velocity Ratio									
Test Points	NE	ENE	Е	ESE	SE	SSE	S	SSW	Weighted
P1	0.12	0.10	0.02	0.03	0.10	0.11	0.05	0.30	0.070
P2	0.07	0.10	0.02	0.01	0.05	0.11	0.06	0.20	0.053
P3	0.08	0.08	0.05	0.03	0.03	0.02	0.01	0.08	0.040
P4	0.05	0.06	0.04	0.02	0.11	0.03	0.02	0.18	0.044
P5	0.03	0.09	0.03	0.01	0.11	0.02	0.01	0.09	0.037
P6	0.13	0.03	0.03	0.05	0.02	0.06	0.07	0.13	0.046
P7	0.04	0.03	0.01	0.07	0.02	0.06	0.02	0.13	0.030
P8	0.17	0.22	0.12	0.10	0.22	0.03	0.03	0.17	0.108
P9	0.22	0.05	0.19	0.10	0.05	0.02	0.02	0.14	0.090
P10	0.16	0.35	0.20	0.07	0.11	0.04	0.03	0.09	0.124
P11	0.63	0.44	0.61	0.08	0.31	0.05	0.05	0.10	0.277
P12	0.69	0.46	0.69	0.09	0.30	0.04	0.05	0.06	0.299
P13	0.65	0.47	0.68	0.06	0.30	0.03	0.06	0.06	0.291
P14	0.55	0.37	0.60	0.02	0.28	0.02	0.06	0.04	0.246
P15	0.60	0.36	0.67	0.02	0.33	0.02	0.07	0.06	0.267
P16	0.54	0.30	0.64	0.03	0.33	0.02	0.08	0.10	0.253
P17	0.47	0.26	0.59	0.03	0.32	0.02	0.08	0.04	0.225
P18	0.45	0.27	0.56	0.04	0.32	0.03	0.08	0.12	0.226
P19	0.45	0.29	0.52	0.06	0.32	0.05	0.09	0.17	0.229
P20	0.48	0.31	0.51	0.07	0.32	0.08	0.09	0.23	0.239
P21	0.30	0.24	0.21	0.07	0.25	0.09	0.10	0.25	0.155
P22	0.21	0.22	0.01	0.08	0.25	0.10	0.10	0.23	0.104
P23	0.01	0.17	0.09	0.11	0.26	0.10	0.10	0.19	0.095
P24	0.07	0.01	0.15	0.12	0.25	0.09	0.09	0.14	0.086
P25	0.07	0.16	0.03	0.15	0.18	0.11	0.09	0.18	0.086
P26	0.04	0.13	0.11	0.16	0.14	0.09	0.08	0.19	0.091
P27	0.13	0.04	0.03	0.01	0.06	0.00	0.02	0.07	0.035
P28	0.09	0.06	0.10	0.02	0.10	0.02	0.03	0.37	0.073
P29	0.05	0.20	0.05	0.15	0.17	0.09	0.08	0.33	0.101
P30	0.08	0.22	0.07	0.15	0.20	0.08	0.06	0.28	0.107
P31	0.07	0.26	0.11	0.13	0.18	0.07	0.05	0.28	0.113
P32	0.06	0.30	0.13	0.13	0.15	0.06	0.05	0.28	0.119
P33	0.06	0.28	0.12	0.15	0.16	0.11	0.04	0.32	0.123
P34	0.06	0.19	0.11	0.19	0.18	0.12	0.04	0.26	0.110
P35	0.06	0.24	0.10	0.18	0.18	0.12	0.05	0.03	0.098
P30	0.07	0.23	0.10	0.13	0.19	0.12	0.05	0.20	0.104
P37	0.09	0.20	0.09	0.06	0.20	0.10	0.05	0.18	0.093
F 30	0.12	0.10	0.00	0.04	0.19	0.06	0.00	0.21	0.078
P39 P40	0.14	0.03	0.04	0.04	0.17	0.00	0.05	0.24	0.069
041	0.14	0.00	0.03	0.03	0.15	0.07	0.05	0.27	0.000
041	0.11	0.07	0.13	0.05	0.17	0.09	0.04	0.24	0.007
042	0.12	0.09	0.11	0.00	0.17	0.09	0.05	0.21	0.000
044	0.10	0.00	0.03	0.00	0.10	0.00	0.00	0.10	0.070
045	0.10	0.06	0.06	0.00	0.10	0.06	0.00	0.10	0.003
046	0.12	0.00	0.00	0.07	0.02	0.05	0.06	0.10	0.048
047	0.10	0.01	0.03	0.08	0.02	0.04	0.05	0.09	0.038

Baseline Scheme Wind Velocity Ratio									
Test Points	NE	ENE	E	ESE	SE	SSE	s	SSW	Weighted
O48	0.07	0.02	0.02	0.09	0.04	0.04	0.04	0.11	0.040
O49	0.08	0.08	0.04	0.11	0.10	0.04	0.04	0.14	0.058
O50	0.10	0.10	0.06	0.12	0.14	0.03	0.04	0.16	0.071
O51	0.17	0.16	0.08	0.13	0.19	0.03	0.03	0.16	0.093
O52	0.20	0.16	0.09	0.15	0.21	0.04	0.02	0.15	0.101
O53	0.14	0.09	0.06	0.05	0.03	0.05	0.04	0.01	0.051
O54	0.12	0.10	0.05	0.03	0.09	0.04	0.04	0.05	0.052
O55	0.11	0.14	0.04	0.12	0.08	0.05	0.05	0.06	0.064
056	0.14	0.16	0.05	0.18	0.06	0.05	0.06	0.10	0.080
057	0.17	0.17	0.07	0.22	0.06	0.05	0.06	0.08	0.092
058	0.20	0.18	0.09	0.24	0.07	0.05	0.06	0.04	0.098
059	0.23	0.18	0.14	0.13	0.09	0.04	0.06	0.02	0.099
060	0.26	0.19	0.18	0.04	0.10	0.03	0.05	0.02	0.101
061	0.20	0.20	0.22	0.03	0.11	0.03	0.05	0.02	0.173
062	0.30	0.21	0.25	0.07	0.11	0.03	0.05	0.05	0.120
064	0.34	0.23	0.30	0.13	0.11	0.04	0.05	0.05	0.130
065	0.35	0.23	0.31	0.04	0.08	0.03	0.05	0.05	0.140
066	0.12	0.24	0.14	0.12	0.09	0.04	0.30	0.41	0.138
067	0.10	0.25	0.13	0.15	0.13	0.07	0.30	0.40	0.143
O68	0.07	0.26	0.12	0.17	0.19	0.05	0.30	0.40	0.145
O69	0.05	0.27	0.11	0.19	0.23	0.02	0.30	0.40	0.145
070	0.04	0.29	0.11	0.21	0.26	0.04	0.30	0.40	0.149
071	0.06	0.31	0.10	0.22	0.29	0.05	0.30	0.39	0.155
072	0.09	0.32	0.10	0.23	0.30	0.07	0.30	0.39	0.162
073	0.13	0.34	0.10	0.24	0.32	0.08	0.30	0.39	0.171
074	0.18	0.36	0.09	0.24	0.34	0.09	0.31	0.37	0.179
075	0.22	0.37	0.08	0.24	0.34	0.12	0.31	0.38	0.185
076	0.24	0.37	0.07	0.24	0.34	0.14	0.31	0.37	0.187
077	0.26	0.39	0.06	0.23	0.34	0.14	0.31	0.33	0.184
078	0.27	0.39	0.02	0.23	0.35	0.15	0.32	0.34	0.180
079	0.29	0.39	0.03	0.21	0.34	0.16	0.31	0.36	0.183
080	0.32	0.36	0.09	0.17	0.34	0.17	0.30	0.36	0.188
081	0.35	0.33	0.12	0.13	0.34	0.18	0.29	0.36	0.187
082	0.38	0.32	0.15	0.10	0.33	0.19	0.27	0.35	0.191
084	0.41	0.30	0.17	0.07	0.32	0.21	0.20	0.30	0.203
085	0.44	0.51	0.20	0.03	0.31	0.23	0.24	0.33	0.235
086	0.50	0.55	0.30	0.04	0.30	0.24	0.22	0.35	0.252
087	0.11	0.10	0.14	0.05	0.16	0.10	0.04	0.26	0.094
088	0.33	0.20	0.29	0.06	0.04	0.04	0.04	0.05	0.131
089	0.30	0.18	0.26	0.06	0.09	0.04	0.04	0.05	0.124
O90	0.27	0.16	0.23	0.06	0.14	0.03	0.03	0.06	0.114
SVR				-	0.127		-		
LVR					0.128				

Appendix D – Proposed Scheme Velocity Ratios

Proposed Scheme Wind Velocity Ratio									
Test Points	NE	ENE	E	ESE	SE	SSE	S	SSW	Weighted
P1	0.04	0.10	0.04	0.06	0.07	0.06	0.06	0.33	0.066
P2	0.03	0.07	0.03	0.05	0.06	0.06	0.05	0.30	0.055
P3	0.05	0.02	0.02	0.02	0.02	0.03	0.04	0.22	0.036
P4	0.03	0.10	0.02	0.05	0.08	0.04	0.07	0.17	0.048
P5	0.01	0.10	0.03	0.01	0.08	0.02	0.02	0.18	0.041
P6	0.05	0.14	0.09	0.03	0.11	0.03	0.08	0.07	0.062
P7	0.02	0.11	0.06	0.04	0.09	0.02	0.05	0.10	0.049
P8	0.05	0.05	0.05	0.07	0.03	0.03	0.03	0.18	0.046
P9	0.09	0.43	0.03	0.06	0.03	0.05	0.02	0.16	0.093
P10	0.45	0.35	0.41	0.05	0.14	0.06	0.04	0.08	0.193
P11	0.56	0.42	0.53	0.07	0.22	0.05	0.05	0.10	0.245
P12	0.58	0.48	0.62	0.11	0.24	0.05	0.06	0.06	0.277
P13	0.55	0.47	0.61	0.11	0.25	0.03	0.06	0.08	0.271
P14	0.49	0.41	0.56	0.08	0.26	0.05	0.07	0.05	0.245
P15	0.51	0.39	0.61	0.03	0.29	0.05	0.08	0.10	0.255
P16	0.47	0.31	0.57	0.03	0.29	0.04	0.08	0.14	0.236
P17	0.45	0.24	0.53	0.07	0.28	0.03	0.08	0.17	0.222
P18	0.45	0.24	0.52	0.11	0.28	0.03	0.08	0.12	0.219
P19	0.45	0.27	0.52	0.14	0.28	0.04	0.07	0.06	0.223
P20	0.49	0.31	0.57	0.14	0.33	0.06	0.08	0.19	0.255
P21	0.44	0.24	0.48	0.16	0.29	0.07	0.08	0.27	0.229
P22	0.35	0.16	0.35	0.19	0.24	0.08	0.07	0.24	0.185
P23	0.29	0.13	0.30	0.22	0.23	0.10	0.09	0.21	0.166
P24	0.25	0.12	0.24	0.18	0.24	0.08	0.08	0.16	0.141
P25	0.11	0.12	0.08	0.17	0.21	0.05	0.01	0.30	0.100
P26	0.16	0.21	0.07	0.03	0.04	0.02	0.09	0.36	0.095
P27	0.21	0.33	0.06	0.07	0.02	0.06	0.07	0.44	0.123
P28	0.10	0.25	0.08	0.10	0.05	0.05	0.10	0.46	0.114
P29	0.07	0.25	0.08	0.17	0.08	0.07	0.14	0.53	0.128
P30	0.07	0.22	0.09	0.21	0.14	0.10	0.15	0.43	0.129
P31	0.04	0.18	0.04	0.20	0.15	0.10	0.11	0.30	0.099
P32	0.04	0.04	0.02	0.13	0.14	0.09	0.05	0.28	0.063
P33	0.05	0.03	0.07	0.19	0.16	0.12	0.09	0.25	0.082
P34	0.04	0.03	0.07	0.18	0.16	0.13	0.13	0.19	0.079
P35	0.02	0.16	0.08	0.16	0.17	0.13	0.10	0.15	0.091
P36	0.02	0.06	0.08	0.17	0.18	0.11	0.06	0.23	0.081
P37	0.03	0.07	0.08	0.13	0.16	0.09	0.02	0.25	0.074
P38	0.03	0.03	0.06	0.08	0.13	0.08	0.04	0.28	0.064
P39	0.03	0.07	0.06	0.05	0.10	0.06	0.05	0.29	0.063
P40	0.04	0.11	0.05	0.04	0.08	0.06	0.05	0.29	0.066
O41	0.03	0.17	0.11	0.02	0.09	0.08	0.03	0.26	0.078
O42	0.03	0.15	0.10	0.03	0.08	0.07	0.04	0.23	0.073
O43	0.03	0.13	0.10	0.04	0.07	0.06	0.05	0.19	0.066
O44	0.03	0.11	0.09	0.04	0.06	0.05	0.06	0.16	0.060
O45	0.03	0.11	0.08	0.05	0.05	0.03	0.06	0.13	0.057
O46	0.02	0.11	0.08	0.05	0.06	0.02	0.06	0.10	0.052
047	0.01	0.12	0.07	0.06	0.05	0.02	0.06	0.10	0.051

Proposed Scheme Wind Velocity Ratio									
Test Points	NE	ENE	Е	ESE	SE	SSE	S	SSW	Weighted
O48	0.01	0.15	0.07	0.06	0.07	0.03	0.05	0.12	0.058
O49	0.01	0.16	0.07	0.06	0.03	0.04	0.05	0.14	0.059
O50	0.03	0.11	0.07	0.06	0.05	0.06	0.04	0.16	0.055
O51	0.04	0.03	0.06	0.06	0.05	0.06	0.03	0.17	0.047
O52	0.06	0.14	0.06	0.06	0.04	0.05	0.02	0.16	0.060
O53	0.05	0.24	0.06	0.01	0.05	0.05	0.04	0.02	0.059
O54	0.04	0.19	0.07	0.04	0.05	0.04	0.04	0.05	0.057
O55	0.06	0.23	0.09	0.09	0.08	0.05	0.05	0.06	0.079
O56	0.09	0.23	0.12	0.13	0.09	0.05	0.06	0.10	0.096
O57	0.12	0.24	0.14	0.17	0.11	0.06	0.06	0.07	0.105
O58	0.13	0.24	0.14	0.19	0.11	0.05	0.06	0.04	0.107
O59	0.14	0.25	0.15	0.12	0.10	0.05	0.06	0.02	0.100
O60	0.16	0.26	0.16	0.04	0.08	0.05	0.06	0.01	0.096
O61	0.18	0.26	0.18	0.03	0.06	0.05	0.05	0.01	0.101
O62	0.21	0.28	0.21	0.06	0.04	0.05	0.05	0.03	0.114
O63	0.26	0.30	0.24	0.10	0.04	0.06	0.05	0.06	0.135
O64	0.28	0.32	0.25	0.03	0.06	0.06	0.05	0.05	0.134
O65	0.27	0.31	0.23	0.04	0.14	0.05	0.05	0.05	0.135
O66	0.04	0.20	0.07	0.15	0.13	0.04	0.30	0.40	0.118
O67	0.01	0.21	0.07	0.15	0.18	0.06	0.29	0.40	0.120
O68	0.07	0.25	0.08	0.17	0.23	0.07	0.30	0.40	0.138
O69	0.22	0.29	0.08	0.19	0.25	0.03	0.30	0.40	0.159
070	0.29	0.33	0.08	0.21	0.28	0.02	0.30	0.40	0.174
071	0.31	0.37	0.07	0.23	0.29	0.04	0.30	0.39	0.183
072	0.33	0.41	0.05	0.24	0.30	0.06	0.30	0.39	0.189
073	0.34	0.44	0.04	0.25	0.31	0.08	0.31	0.39	0.195
074	0.35	0.48	0.03	0.25	0.32	0.09	0.31	0.37	0.198
075	0.37	0.51	0.05	0.25	0.32	0.12	0.31	0.38	0.211
O76	0.38	0.52	0.07	0.25	0.33	0.13	0.31	0.38	0.220
077	0.39	0.51	0.09	0.25	0.33	0.13	0.31	0.34	0.220
078	0.41	0.44	0.10	0.24	0.33	0.14	0.32	0.35	0.215
O79	0.43	0.27	0.11	0.21	0.33	0.15	0.31	0.36	0.195
O80	0.45	0.06	0.11	0.17	0.33	0.16	0.30	0.35	0.165
O81	0.46	0.11	0.12	0.13	0.33	0.17	0.28	0.35	0.168
O82	0.48	0.27	0.12	0.09	0.33	0.18	0.26	0.35	0.187
O83	0.49	0.40	0.13	0.06	0.32	0.20	0.24	0.34	0.204
O84	0.51	0.49	0.15	0.05	0.32	0.21	0.22	0.33	0.219
O85	0.52	0.55	0.19	0.03	0.32	0.23	0.19	0.33	0.232
O86	0.54	0.58	0.25	0.01	0.32	0.24	0.19	0.34	0.247
087	0.02	0.18	0.12	0.01	0.09	0.09	0.03	0.28	0.081
O88	0.27	0.29	0.21	0.06	0.15	0.04	0.04	0.05	0.128
O89	0.26	0.27	0.18	0.07	0.15	0.04	0.03	0.05	0.121
O90	0.26	0.25	0.14	0.07	0.15	0.03	0.03	0.06	0.109
SVR					0.133				
LVR					0.130				

Appendix E – Baseline Scheme Architectural Layouts

Appendix F – Proposed Architectural Drawings

Appendix G – Input Parameters

Air Properties

Name	Material Type	Order Materials by
air	fluid	Name Chemical Farmula
Chemical Formula	Fluent Fluid Materials	
	air	Fluent Database
	Mixture	Upper Defined Database
	none	
Properties		
Density (kg/m3) constant	Edit	
1.225		
Viscosity (kg/m-s) constant	Edit	
1.7894e-05		

Solution Methods

Solution Methods

Pressure-Velocity Coupling	
Scheme	
Coupled	<u> </u>
Spatial Discretization	
Gradient	
Least Squares Cell Based	_
Pressure	
Standard	_
Momentum	
Second Order Upwind	_
Turbulent Kinetic Energy	
Second Order Upwind	<u> </u>
Turbulent Dissipation Rate	
Second Order Upwind	<u> </u>
Transient Formulation	
-	
Non-Iterative Time Advancement	
Frozen Flux Formulation	
Pseudo Transient	
☑ Warped-Face Gradient Correction	
High Order Term Relaxation Options	
Default	

Viscous Model

Solution Methods

Pressure-Velocity Coupling	
Scheme	
Coupled	<u> </u>
Spatial Discretization	
Gradient	•
Least Squares Cell Based	-
Pressure	
Standard	-
Momentum	
Second Order Upwind	–
Turbulent Kinetic Energy	
Second Order Upwind	•
Turbulent Dissipation Rate	
Second Order Upwind	<u> </u>
Transient Formulation	
Ţ	
Non-Iterative Time Advancement	
Frozen Flux Formulation	
Pseudo Transient	
✓ Warped-Face Gradient Correction	
High Order Term Relaxation Options	

Default